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The effects on the nuclear magnetic resonance line shape of a polycrystalline sample resulting from com­
bined axially symmetric electric quadrupole and anisotropic shift interactions have been calculated through 
the second order. The line shape of the central transition of the resonance has been shown to change smoothly 
from that characteristic of quadrupole effects (inverse field dependence) to that characteristic of anisotropic 
shift effects (direct field dependence) as the magnetic field strength is increased. Methods are given for 
determining the magnetic shift parameters—both isotropic and anisotropic (axial)—and the electric quad­
rupole coupling from line shape and shift measurements. An illustration of these methods is given, based 
on experimental measurements of the Al27 spectrum in polycrystalline PrAl2. 

INTRODUCTION 

A NUCLEAR quadrupole interaction may occur 
simultaneously in conjunction with an anisotropic 

magnetic shift in a variety of solids. The noncubic pure 
metals, in particular the hexagonal close-packed ones, 
afford a considerable number of examples, some which 
have already been studied. Among the latter may be 
listed Sc,1 In,2 Tc,3 and the list of possibilities must 
include Ti, Zr, Hf, La, and Lu and perhaps others. 
Nuclear magnetic resonances (NMR) in intermetallic 
compounds may also be expected to exhibit these com­
bined effects. The cubic Laves phase compounds of the 
MgCu2 type have provided a number of examples, prin­
cipally involving the Al27 nucleus.4'5 Transition metal 
borides6 and beryllides, as well as other hexagonal and 
tetragonal intermetallies may also be included in this 
category. Finally, the nuclear magnetic resonance of the 
halogen nuclei in the paramagnetic chlorides, bromides, 
and iodides of transition metals will, in general, reflect 
the presence of both types of interaction.7 

In the following sections the theory for these com­
bined effects is considered in some detail. The separate 
cases of quadrupolar and anisotropic shift effects have 
been discussed individually at length, both in the journal 
literature and in reviews, and only brief recapitulations 
of these will be presented here, in order to point up the 
differences and similarities that exist between them and 
the case in which the two effects are interwoven. Aver-
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aged line-shape patterns appropriate to polycrystalline 
(powder) samples are given for various relative strengths 
of the two effects, and the behavior of various experi­
mentally observed quantities (linewidths, shifts) are 
calculated as functions of resonance frequency for some 
combinations of values of the quadrupole and shift 
parameters typical of those already observed. These 
calculations also include in an empirical manner the 
effects of a frequency-independent linewidth (nuclear 
dipolar, etc.) on the expected experimental behavior. 
Finally, a number of experimental cases are considered 
which illustrate the method of analysis to determine the 
various interaction parameters. 

THEORY 

Quadrupolar Effects Only 

The effects of electric quadrupole interactions on the 
Zeeman energy of the nuclear magnetic moment were 
first discussed by Pound,8 who gave formulas for the 
levels and transitions to be expected in the case of 
single-crystal specimens. Because the electric field gradi­
ent tensor is an intrinsic property of the sample, these 
levels and the transitions between them are dependent 
upon the orientation of the crystal in the external mag­
netic field. For polycrystalline specimens, such as are 
required in the case of metallic conductors, these results 
must be averaged over all possible orientations of the 
crystallites. The review article of Cohen and Reif,9 for 
example, explains how this averaging is carried out. 

In the absence of anisotropic magnetic shift complica­
tions, and for the case of an axially symmetric field 
gradient tensor, the expression correct to second order 
for the transition frequencies appropriate to a nucleus 
of spin / in a single crystal specimen is 
v(m<^ m— 1) 

•• Po+hQW-1) (m~h)+ (VQ2/32VO) (1-JK2) 
X{[102w(w-l ) -18/ ( /+l )+39] M

2 

- [ 6 m ( m - l ) - 2 J ( I + l ) + 3 ] } . (1) 
8 R . V. Pound, Phys. Rev. 79, 685 (1950). 
9 M. H. Cohen and F. Reif, in Solid State Physics, edited by F. 

Seitz and D. Turnbull (Academic Press Inc., New York, 1957), 
Vol. 5, p. 311. 
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Here, VQ=3e2qQ/2I(2I—l)h is a convenient measure 
of the strength of the quadrupole interaction, and 
/x=cos0, where 6 is the angle between the z axis of the 
principal axis system of the field gradient tensor and 
the external magnetic field. In this equation, the factor 
VQ is the pure Zeeman transition frequency (Larmor fre­
quency) in the absence of electric quadrupole interac­
tion. I t reflects the fact that the pure Zeeman levels are 
equally spaced. The term independent of vo arises from 
first-order perturbation theory and affects the so-called 
" satellite" transitions only. That is, the central, or 
!<->— | , transition is unshifted in first order, and 
satellite resonances appear, placed symmetrically with 
respect to it. In second-order theory, the terms in 
VQ2/VQ are obtained, all of the transitions being affected, 
although the satellites are shifted equally in pairs. 

In the case of a polycrystalline sample, the expres­
sions corresponding to (1) are those that give the fre­
quencies at which the intensity maxima in the averaged 
resonance line shape occur. As shown by Cohen and 
Reif,9 for example, intensity maxima for the satellites 
will always occur for 0= 90° ( M = 0 ) , SO that for the poly­
crystalline sample, satellite resonance peaks will appear 
at 

v(m—»ra— 1) = ^o—\vQ{2m— 1)— (VQ2/16V0) 

X [ 3 m ( m - l ) - / ( 7 + l ) + f ] . (2) 

In addition, other intensity maxima will arise at other 
values of 6 or /x when the second-order frequency de­
pendence of the satellites is taken into account. These 
additional satellites are important only in the case of 
large quadrupole coupling and large spin.2 

I t is clear that although the satellites are asymmetri­
cally placed with respect to the center point of the en­
tire resonance pattern because of the second-order con­
tribution, the spacing between corresponding opposite 
satellites always has a constant value. Thus, for ex­
ample, 

v{—m+1 «-» —m) — v(m<r^m—l) = ^VQ(2m—l). (3) 

Finally, because of the particular orientation de­
pendence which the central transition acquires in second 
order, the averaged expression for it possesses two 
maxima.9 These correspond to /z=0 and ju2=5/9, and 
the frequencies at which these maxima occur are given 
by 

" r(i<-» - i ) = " o + W / 1 6 v o ) [ / ( / + l ) - t ] (4) 

""(*<-»• - i ) = ^ o - ( v Q V 9 , o ) [ / ( / + l ) - f ] . (5) 

In addition to these maxima, a small discontinuity or 
"s tep" appears at V=PQ. When dipolar broadening 
effects are taken into account this step is very much 
smoothed over so that it is only rarely discernable ex­
perimentally. The spacing between the two peaks (4) 
and (5)—in effect, the "width" or splitting of the central 

transition—is inversely proportional to the Zeeman 
frequency v0, 

A ^ = ^ - ^ n = ( 2 5 ^ 2 / 1 4 4 ^ o ) C / ( / + l ) - i ] . (6) 

In a paramagnetic substance the pure Zeeman reso­
nance frequency v0 will differ from its value in a dia-
magnetic (reference) environment by an amount which 
is usually expressed as the paramagnetic shift (Knight 
shift in the case of a metal), 

K=(VO~PR)/VR (7) 

for measurements made at constant magnetic field 
strength, and by 

K=(HR-H0)/Ho (8) 

for measurements made at constant resonance fre­
quency. For the case of resonances in polycrystalline 
samples in which electric quadrupole effects are also 
present, so that (2), (4), and (5) describe the location 
of the resonance peaks, this shift may be measured by 
locating the true center of the resonance pattern using 
(4) and (5), and determining the shift of this point from 
the diamagnetic standard resonance. Since the resonance 
pattern will usually be observed at a number of fre­
quencies to verify the quadrupolar effects, an alternative 
and convenient means of measuring the shift is to 
measure the shift of the midpoint of the two peaks of the 
central transition. Since these two peaks coalesce into 
one at infinite field strength (frequency), this "average" 
shift will extrapolate to the true shift at infinite field. 
In fact, this average shift is inversely proportional to 
the square of the resonance frequency: 

KAV — •— 
VR 

VQ—VR 7 VQ2 

= "[/(/+!)-!] . (9) 
vR 288 VR2 

To summarize, if electric quadrupole effects only are 
present, the nmr of a nucleus in a metallic conductor or 
paramagnetic solid will be characterized by 

(a) A set of 21— 1 satellite resonances symmetrically 
disposed with respect to the true resonance center in the 
limit of infinite magnetic field strength. The spacing 
between corresponding satellites is constant, independ­
ent of the magnetic field strength, and measures the 
strength of the electric quadrupole interaction. 

(b) A central transition whose splitting varies in­
versely as the resonance frequency. The frequency de­
pendence of this splitting may also be used to determine 
the quadrupole interaction. 

(c) An average shift which is proportional to 1/VR2. 
The infinite field extrapolated value of this shift is the 
shift of the true resonance center. In addition, the slope 
of the i£av versus 1/VR2 plot provides an additional meas­
urement of the quadrupole interaction. 
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Anisotropic Magnetic Shift Only 

Bloembergen has discussed in detail the first-order 
effects of an anisotropic shift tensor on the resonance 
line shape in a metallic conductor or paramagnetic sub­
stance in the absence of electric quadrupole effects.10 

For the present, we need only consider the results 
appropriate to the case of an axially symmetric shift 
tensor. All of the 21+1 pure Zeeman levels are shifted 
by an equal amount in first order, with the result that 
only a single resonance appears, whose frequency in a 
single crystal is given by 

v=voll+K^(3n2-l)/(l+Kiso)l. (10) 

Here as before, JU=COS0, where now 6 is the angle be­
tween the z axis of the principal axis system of the shift 
tensor and the external magnetic field direction. In 
addition, Kiao and iTax are the isotropic and axial com­
ponents of the shift tensor, respectively, VQ represents 
the pure Zeeman frequency including the isotropic shift 
contribution, i.e., vo=VR(l+Kiao). In most cases the 
isotropic shift is sufficiently small that the distinction 
between K^ and K^/ (1+^iso) is not needed, but in the 
following we shall employ the notation a=Ka,-x/(l+Ki90). 
The angle-dependent factor is seen to be identical with 
that which occurs in the first-order quadrupole shift of 
the satellite resonances. 

In a polycrystalline sample, the intensity maximum 
occurs at 0=90° and the frequency at this point will be 

„ n = I , 0 ( i _ a ) . (11) 

Besides this single maximum in the resonance shape, 
there now also appears a discontinuous step corre­
sponding to ix = 1 (6=0° or 6= 180°). 

vI=vo(l+2a). (12) 

The notation v1 and v11 corresponds to that used in the 
quadrupolar case, in that v1 is the high-frequency side 
of the resonance when K{80 and Kax are both positive. 
Because the resonance intensity depends inversely on 
the coefficient of the (3/z2— 1) factor,9 which is relatively 
small in the anisotropic shift case, this step is usually 
observable. Steps also occur in the first-order quadrupole 
pattern [Eq. (2)], but because then the coefficient of 
(3ju2— 1) is so large, the height of the steps is very small, 
and these are not readily detectable. 

Neglecting the Van Vleck dipolar linewidth,11 the 
width of the resonance peak due to the anisotropic shift 
is given by the spacing between the intensity maximum 
at fjL—0 and the step at JJ,= 1, 

A*>an= v1— vu = 3avo= SK^VR . (13) 

The intensity maximum at ju = 0 lies on the low-fre­
quency side of the resonance if K^ is positive and on 
the high-frequency side if iTax is negative. Similarly, the 
step at fi— 1 lies on the high-frequency side of the reso-

*> N. Bloembergen and T. J. Rowland, Acta Met. 1, 731 (1953). 
11 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). 

nance if iTax is positive and on the low-frequency side 
if iTax is negative. The isotropic and anisotropic shift 
parameters can be determined by measuring the shift of 
either v1 or v11 and the width A*>an. 

Summarizing, the line shape of an NMR line in the 
case of anisotropic magnetic shift effects only is 
characterized by 

(a) A width which is directly proportional to the 
resonance frequency or field. 

(b) An asymmetric appearance which provides an 
indication of the sign of the axial component of the shift 
tensor. For the actual appearance of the theoretical 
shapes, see Ref. 10. 

Combined Nuclear Quadrupole and 
Anisotropic Shift Effects 

Neglecting nuclear dipolar and exchange interactions 
of the Van Vleck type,11 the Hamiltonian for N nuclear 
spins and n conduction electrons in an external magnetic 
field HQ in the z direction is written12: 

H=H0^+lL mo(LzW+2SzW)+H0M 

+ E gnoHoi.M+i: £ H , ( W ) . (14) 
i=l t—1 j=4 

Here, H^e) represents the Hamiltonian for the conduc­
tion electrons in the field of the ion cores. HQ

(n) repre­
sents the Hamiltonian for the ion cores. The two terms 
involving Ho are the Zeeman energies of the conduction 
electrons and the nuclei. The term Y,ijH'(i]) describes 
the noncoulomb interaction of the n conduction elec­
trons with the N nuclei. This latter will be approxi­
mated by including only the magnetic dipole and elec­
tric quadrupole parts of the interaction, that is, by 

2gMo0l(j")-L(i> 

hrif 

rSco.I(y> 3(sw-ry)a™-r*)-| 
-2gp<0\ 

16TT 

3 

+ E (-i)«G<(v£)-g. (is) 
a — 2 

The electric quadrupole moment operators Qq and elec­
tric field gradient components (VE)q are defined by 
Pound.8 

In Appendix A it is shown that the second-order con­
tribution of the anisotropic^shift portion of H,{i1) is 
negligibly small, and that the second-order contribu-

12 F. J. Milford, Am. J. Phys. 28, 521 (1960). 
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tion resulting from interference terms between the 
anisotropic shift and quadrupole interactions vanishes 
identically. With this result, the nuclear Zeeman levels 
are obtained by adding together the expressions for the 
anisotropic shift (first order) and for the nuclear quadru­
pole interaction (second order). The transition fre­
quencies in which we are interested can be obtained in 
a similar manner by adding together the expressions for 
the separate interactions. 

In the large majority of actual examples encountered 
to date, the resonant nuclei occupy sites of axial sym­
metry, so that the electric field gradient tensor is axially 
symmetric; that is, it can be characterized by a single 
parameter q= d2V/dz2. We shall suppose that the mag­
netic shift tensor is also axially symmetric, and that the 
major axes of the two tensors are coincident. This is 
sufficiently general for understanding most of the ex­
amples at hand. 

The zeroth order, or pure Zeeman, frequency of this 
system is just the resonance frequency in the metal or 
paramagnetic solid, 

vo=vR(l+KiBO). (16) 

As is shown by (1) and (10) for the case of a single 
crystal, the first-order quadrupolar and anisotropic shift 
corrections have the same dependence upon the angle 
6 between the external magnetic field Ho and the z 
axis of the principal axis system of the relevant tensor. 
Under the assumption that these axes are coincident, 
we find for the satellite frequencies in first order: 

v(tn—> m— 1) == v0{ 1 + (3/z2— 1) 

X[a+J(^Ao)(w-J)]}. (17) 
For a polycrystalline sample, the principal maximum 
intensity for the satellites again occurs when ju=0, so 
that corresponding to (2), resonance peaks appear at 

v(m<^m-l)=vo{l~Za+i(pQ/po)(m~^}. (18) 

Additional peaks will arise for certain combinations of 
the values of the various parameters, but these are only 
significant in the case that both VQ and / are large. 

Thus, in first order, the effect of the anisotropic shift 
is to displace all of the satellites by the amount — avo. In 
a sufficiently strong magnetic field that the second-order 
quadrupole shifts of the satellites are negligible, we may 
expect to find their positions determined by (18). The 
difference between corresponding satellites is seen still 
to be constant and to be independent of i£ax. 

The satellite resonances in a polycrystalline sample 
will be correctly described to second order by adding to 
(18) the second-order terms from (2). Thus, we now 
have 

v(m<r^m— 1 ) = I>O{1— [a+§(vQ/vo)(m—|)] 

- ^ ( ^ A o ) 2 [ 3 ^ ( m - l ) - / ( / + l ) + f ] } . (19) 

for the satellite frequencies. The result mentioned above 
that the spacing between corresponding satellites is in­
dependent of i^ax still applies, and in addition, as in the 
case of quadrupole effects only, the spacing between cor­
responding satellites is independent of (VQ/VO)2. In other 
words, the relationship (3) still holds exactly. 

More interesting now is the behavior of the shape of 
the central transition. In a single crystal sample, the 
frequency of the central transition is given by com­
bining (1) and (10) and setting m—\\ 

K i ^ - i ) = ^ o { i + W / i 6 , o 2 ) [ / ( / + i ) - i ] 
X ( l - M 2 ) ( l - V ) + a ( 3 M

2 - l ) } . (20) 

To compute the line shape appropriate to a poly­
crystalline sample, we have, following Cohen and Reif,9 

P(v-vo)d(v-vo) = P(d)d(d) = %sm6dd==hdv> 

so that P(y— v0) = h\dv/diJL\-1, —l<ti<l. Now, from 
(20), 

d(v-v0)/dv= ( ^ 2 / 4 , O ) M { [ / ( / + 1 ) - | ] 

X(9ii2-5)+2Wa/vQ
2}. (21) 

Again, as in the case of quadrupole effects alone, (4) 
and (5), this shape function possesses two singularities. 
These now occur at /x=0 and at 

[5 W ] 1 / 2 

19 3,Q
2[/(I+l)-f]) 

The ix singularities are not distinguishable since v—vo 
depends only on /z2. In addition, a discontinuity or step 
in the intensity occurs at /z= 1, as in the pure quadrupole 
case. The behavior of the singularities and of the step 
as a function of the resonance frequency is seen to de­
pend on the sign of i£ax as well as on the relative magni­
tudes of iTaxvo and (PQ)2/VO. 

Because 0 < / i 2 < l , the singularity at y' must satisfy 
the condition 0 < (5/9—av0

2/6b)<l. This means that 
the range of resonance frequencies within which this 
singularity will appear is determined by 

- 8b/3a > vo2 > 0 for a < 0 , (22a) 

0<v0
2<10b/3a f o r a > 0 . (22b) 

By contrast, the singularity at /x=0 and the step at ju= 1 
hold for all resonance frequencies. Here, we have intro­
duced the convenient definition, b= ^ Q 2 [ / ( / + 1 ) —| ] /16 . 
The resonance frequencies corresponding to the two 
singularities and the step are now seen to be as follows: 

VH—v(fjL=0) = vo+b/vo— avo> (23a) 

VL= v(»=fi') = vo-16b/9v0+% avo-aW/4b, (23b) 

vs=zv(v—l) = vo-{-2avo. (23c) 

In Fig. 1 we show the behavior of the line shape func­
tion P(v—vo) as the relative strength of the quadrupole 
and anisotropic shift interactions is varied from essen-
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tially pure quadrupolar to essentially pure anisotropic 
shift character. The relative strength is represented by 
the dimensionless parameter r=avo2/b, and the abscissa 
is plotted in units of b/vo. Figure 1(a) shows the be­
havior in the case of positive anisotropy and Fig. 1 (b) 
in the case of negative anisotropy. Qualitatively, these 
two cases differ in the important aspect that for posi­
tive i£ax, the step moves outside of the two singularities, 
passing the high frequency (/x = 0) singularity at the 
frequency i>o2= b/3a. By contrast, in the case of negative 
i^ax, the step moves toward lower frequencies, remain­
ing between the singularities and merging with the low 

frequency (M=M') singularity at v0
2=Sb/3a. In both 

cases, the line shape changes gradually from that char­
acteristic of the quadrupole broadened transition to that 
characteristic of anisotropic shift broadening as a func­
tion of the resonance frequency for fixed values of the 
parameters K^ and VQ. 

The shift of the resonance can still be determined in 
the manner described by (9) for the quadrupole effects 
only case. Only now, the midpoint of the two singulari­
ties in the line shape is obtained from the expressions 
for VH and VL, 

UvH+vL) = vo-avo/6-7b/18vo-aW/8b, (24) 

I 
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FIG. 1. The line shape function P(v—vQ) for the case of combined quadrupole and anisotropic shift interactions. The parameter 
r = av0

2/b measures the relative strength of the two interactions, and the examples range from essentially pure quadrupole character at 
the upper left to almost pure anisotropic shift character at the lower right. The abscissa, (V—PQ)V0) is plotted in units of b/vQ. (a) Pos­
itive anisotropic shift, and (b) negative anisotropic shift. 

and the average shift is given by 

VQ—VR a lb 
K«v—-

VR 6 18^2 Sb 
(25) 

Here, as in (9), we have taken vo=vR in all terms ex­
cept the leading one. Equation (25) shows that the 
infinite frequency extrapolated value of the average 
shift now includes a contribution — Kax/6(1+Kim) 

from the anisotropy of the shift, but that the slope of 
the K&v versus VR~2 plot is determined by the quadru­
pole interaction exactly as before, provided that the 
term in vR

2 is negligible. In some cases,2 it is more con­
venient to measure the separate shifts of the two halves 
of the split central transition, KH and KL, defined by 
KH= {vH-vR)/vR=Kiso-a+b/vR\ (26) 
KL— (VR— VL)/VR= —Kiso— 2a/3 

+l6b/9VR*+aW/M, (27) 
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respectively. The infinite frequency extrapolated inter­
cepts of these plots provide two equations in the two 
unknowns K{ao and iTax, and the slopes of the lines 
again give the value of the quadrupole coupling. 

Finally, we consider the various "widths" or splittings 
of the central transition, which are given by 

AVHS—VH— vs=b/vo— 3avo, (vo2<b/3a), (28a) 

= 3avo-b/v0, (b/3a<v0
2), (28b) 

AvHL=VH-vL=25b/9vo-5avo/3+aW/^b, (28c) 

AvsL=vs-vL=16b/9vo+^avo/3+aW/^b, (28d) 

where the range of validity of (28c) and (28d) is given 
by (22a) and (22b). The behavior of these splittings is 
more conveniently represented by the behavior of the 
product voAv/b: 

(29a) 

(29b) 

(29c) 

v0AvHs/b=l-3r, ( r < l / 3 ) 

= 3 r - l , ( r > l / 3 ) 

voAvHL/b=25/9- 5 r / 3 + r 2 / 4 , 
( - 8 / 3 ^ 0 for r<0) 

voAv SL/b= 16/9+4r/3+r 2 / 4 , 
( 0 ^ 10/3 for r>0 ) . . 

Here we have used the variable r=avo2/b. These pro­
ducts are depicted as functions of r in Fig. 2. Negative 
values of r correspond to negative Kax and positive 
values to positive i£ax. The range of frequencies within 
which the splittings AVHL and AVSL are valid is readily 
seen in this representation. 

To summarize, when both nuclear quadrupole and 
anisotropic shift effects are present, the nuclear magnetic 
resonance will be characterized by: 

(a) A set of 27— 1 satellite resonances asymmetrically 
disposed with respect to the true resonance center in the 

limit of infinite magnetic field strength. Provided that 
third and higher order perturbation contributions are 
negligible, the spacing between corresponding satellites 
is constant independent of the magnetic field strength 
and of the anisotropic shift parameter, and is a measure 
of the strength of the electric quadrupole interaction. 

(b) A central transition whose splitting is a function 
of both the quadrupole and anisotropic shift interac­
tions, and tending in general to vary inversely with 
resonance frequency at low frequencies and directly 
at high frequencies. 

(c) An average shift which is mainly proportional 
to VR~2. The infinite field extrapolated value of this shift 
now contains a contribution from the anisotropy of the 
shift tensor. Alternatively, the shifts of the separate 
halves of the central transition provide two infinite 
field intercepts from which the isotropic and axial 
components of the shift tensor may be determined. The 
slope of any of the K versus VR~2 plots provides an 
additional measurement of the quadrupole interaction. 

Numerical Examples 

To illustrate the type of behavior to be expected for 
the splitting of the central transition and for the Knight 
shift (or paramagnetic shift) of the resonance center, we 
show here in graphical form some calculated examples 
based on a quadrupole coupling such that 6 = 0.18 
(Mc/sec)2 and an isotropic shift of +0 .80%. These 
values are representative of those which have been ob­
served for the Al27 resonance in the case of the rare 
earth-aluminum Laves phase compounds.4,5 Various 
combinations of the anisotropic shift parameter a and 
the intrinsic or dipolar linewidth <r have been taken with 
these values of b and Z"iS0, and the examples are given 
only for the splitting AVHL which is the one that is 
usually observed. 
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Figures 3(a) and 3(b) illustrate the behavior of 
AVHL as a function of v<rl as given by (28c). Figure 3(a) 
shows the case for positive anisotropy, and Fig. 3(b) 
that for negative anisotropy. Negative anisotropy causes 
AVHL to curve toward higher values at the high-
frequency end of the range, whereas a positive aniso­
tropy causes AVHL to curve downward at the high-
frequency end. The effect of the intrinsic line width a is 
simply to displace the entire curve toward larger values. 

Figures 4(a) and 4(b) show the behavior of the pro­
duct VOAVHL given by (29c) when a constant linewidth 
term a is added. Figure 4(a) emphasizes the behavior 
of this product in the vicinity of the ordinate intercept 
255/9, where the effect of a is to cause a downward curv­
ature of VQAVHL- Figure 4(b) shows the behavior of 
VOAVHL over a wider range for some of the larger values 
of a. In this case, the contribution from the term in 
r2= (avo2/b2) in (29c) causes an upward curvature at 
high frequencies. 

Figure 5 illustrates the type of behavior that may be 
expected for the average shift of the resonance as given 
by (25) for combined quadrupole and anisotropic shift 
effects. For relatively small values of the anisotropy, the 
intercept at infinite frequency is altered by the term 
— a/6, but larger values of a have the effect of intro­
ducing a downward curvature of Kav at high fre­
quencies. This downward curving effect is independent 
of the sign of a, since it depends only on the a2 term in 
(25). 

EXPERIMENTAL ILLUSTRATION 

Inasmuch as a number of examples of the applica­
tion of these ideas to the analysis of the spectra result­
ing from polycrystalline specimens of metals, in par­
ticular, have already appeared,1"3 we include here for 
illustrative purposes the example of the spectrum of Al27 

in polycrystalline PrAl2, an intermetallic conductor.4'5 

Due to the presence of both temperature-dependent and 
temperature-independent contributions to the Knight 
shift parameters in this case, the extent of interplay 
between the anisotropic shift and quadrupole inter­
actions is also temperature-dependent, providing in one 
substance an interesting range of values of the relative 
strength parameter r [Eq. (29)]. 

Direct measurement of the satellite spacings (19) of 
the Al27 resonance spectrum at room temperature at 
three different frequencies gives for the quadrupole 
coupling, e9qQ/h=4.56±0.12 Mc/sec. This means that 
VQ=0.684 Mc/sec, which is relatively small compared 
to the typical experimental Zeeman frequencies in the 
range 4-16 Mc/sec. Second-order perturbation theory 
treatment should still be appropriate. 

The presence of anisotropy in the Knight shift is re­
vealed by the splitting AVHL of the central transition in 
the manner shown in Fig. 3(b). The experimental re­
sults for room-temperature and liquid-nitrogen tempera­
ture are shown in Fig. 6. At both temperatures the 
AVHL plot curves upward at the high frequency end, 

0.10 0.15 

I//1 (Mc/sec)": 

(a) 

va (Mc/sec) 

250 

200h 

J50r-

lOOh 

50h 

0.04 0.08 0.12 0.16 
I4"1 (Mc/sec)"1 

(b) 

0.20 0.24 

FIG. 3. Splitting of the central transition, AVHL, as a function 
of v<Tl for the case of combined quadrupole and anisotropic shift 
effects. The quadrupole coupling constant is such that 5=0.18 
(Mc/sec)2. (a) Positive anisotropic shift values, and (b) negative 
anisotropic shift values. 

indicating that the anisotropy in the shift is negative 
[Fig. 3(b)]. The degree of curvature is clearly greater 
at 77°K than at room temperature, showing at once that 
the shift anisotropy is temperature-dependent. 

The solid lines in Fig. 6 are least-squares fittings of the 
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cluding the effect of a constant line-
width contribution o\ The quadrupole 
coupling constant is such that 6=0.18 
(Mc/sec)2. (a) Behavior in the vicinity 
of the intercept 25 b/9 in the case of 
relatively small values of a, and (b) be­
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TABLE I. Quadrupole coupling e2qQ/h, anisotropic Knight shift 
parameter a, and dipolar linewidth o-, of the Al27 nuclear magnetic 
resonance in polycrystalline PrAl2 based on a least-squares analysis 
of the splitting of the central transition of the resonance (Fig. 6). 

Temp 
(°K) 

e\Q/h 
(Mc/sec) 

a 
.(%) (kc/sec) 

300 
77 

4.50 
4.69 

-0.055 
-0.22 

15.1 
15.0 

data points to the equation 

AVHL= 2Sb/9v0- 5av0/3+§<r, (30) 

which is (28c) neglecting the term in voz (because a is 
not very large) and including a finite dipolar linewidth 
contribution |or. The equations of these lines are found 
to be (in Mc/sec) 

at 300°K: AVHL=0.633^{r
1+0.000914vo+0.00754, 

at 77°K: A^i /=0.688v (r
1+0.00366vo+0.00749. 

The quadrupole and anisotropy parameters, e2qQ/h and 
a, and the dipolar linewidth a, determined in this 
fashion, are listed in Table I. 

The relative strength parameter r [Eq. (29)] ranges 
at 300°K from - 0 . 0 3 9 at 4 Mc/sec to - 0 . 6 2 at 16 

0.20 

0.04 

OR00M TEMP 
A 7 7 ° K 

0.15 Q20 

».-' (Mc/sec) 

FIG. 6. Splitting of the central transition AVHL of the Al27 

resonance in PrAl2 as a function of v<Tl. The solid curves are least-
squares fittings to Eq. (30) of the text. 
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FIG. 7. The product VQAVHL for the central transition of the Al27 

resonance in PrAl2 as a function of i>o2. The solid lines are least-
squares fittings to voAvHL = 25b/9 — 5ai>o2/3. 

Mc/sec, and at 77°K from -0 .142 at 4 Mc/sec to 
— 2.27 at 16 Mc/sec. This last value approaches the 
limiting value of —8/3 of (28c), and the contribution 
a W / 4 6 of the cross term in (28c) is then 0.020 Mc/sec. 
This should be compared with the total line splitting 
AVHL of 0.105 Mc/sec at this temperature and resonance 
frequency (Fig. 6). 

The central transition splitting measurements may 
also be handled in the manner of (29) by plotting the 
product VOAVHL as a function of i>o2. This is useful when 
the static dipolar width of the resonance is small, as in 
the present case. The experimental data for this example 
are shown in Fig. 7. 

Inasmuch as the quadrupole coupling is not large com­
pared to the nuclear Zeeman frequencies employed, 
measurement of the quantity Kav [Eq. (25)], provides 
a reliable determination of the Knight shift of the reso­
nance. Figure 8 shows the results of room-temperature 
measurements of K&v at eight frequencies in the range 
4-16 Mc/sec. The data are shown plotted both as a 
function of vo~2 and as a function of PO-1 to illustrate 
that the approximation that K&Y^v^~l is not a good 
one, and cannot be reliably extrapolated to the true 
infinite field value of the shift. The quadrupole coupling 
determined from the slope of the Kav versus vo~2 line 
in Fig. 8 is e2qQ/h=4.59 Mc/sec, in agreement with the 
values determined from the satellite spacing and from 
the splitting of the central transition. 

The infinite frequency intercept of the K&v versus 
v<r2 line is +0.526%. Using the value of a from Table 
I , we have from (25) at infinite frequency: 

^Mso— •&• a v T 6 ^ (31) 
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FIG. 8. Average Al27 Knight shift Kav in PrAl2 at room tempera­
ture as a function of PO-2 (bottom scale and solid line) and of 
VQ~1 (top scale and broken line). 

so that in the present case, KiBO= +0.517%. I n the 
same manner, the value of Kiao is obtained at other 
temperatures to complete the characterization of the 
experimental data in terms of KiBO, a, and e2qQ/h. 
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APPENDIX A 

We shall consider the interplay of the Knight shift 
with the quadrupole terms.13 The SZIZ portion of the con­
tact term in (15) simply contributes a small additional 
field at the nucleus which results in an additional 
Zeeman splitting and shift of all the resonances by the 
same amount. This is the usual Knight shift. The re­
maining terms in the contact interaction are of the form 
S+I- or S-I+, neither of which has diagonal matrix 
elements. In second-order perturbation theory each 

would contribute to a term involving an energy de­
nominator of the order pH0 due to the flip of electron 
spins. These terms are small to order g/x/^^10 - 3 com­
pared to either diagonal Knight shift terms or second-
order quadrupole terms and thus may be neglected. 
The same argument enables us to eliminate a number of 
terms in the balance of (15), and to write finally, 
H'w^H'KA+H'Qtmih 

(S z kI z j 3 (SzkZjk) (Ik • Tjk) i 

* I rrf rjk
5 (Al) 

which will be referred to as the anisotropic Knight shift 
interaction. Hf

Q is the quadrupole interaction and is the 
last term of (15). The operator H'KA is diagonal in the 
electron spins; it can be further broken down into a 
part which is diagonal in the nuclear spin and a part 
which is not: 

H KA — H KAd~{-E.fKA<$- (A2) 

The individual operators are 

n 
H,KAd^~2giJio0Izj X; Szk(l—3 CQsdjk)/rjk

d, 

n 
H'KA0=6gfltft £ S,fc[cOS0y* 

(A3) 

X (Ijx cos(t>jk+Ijy sin^yfc) sin0jfc]/Vyfc
3. 

The shift in energy of the mth. nuclear level will be 
given by 

AEm= (H'Q+H'KA*) mm 

+ £ I (H'Q+H'KAO)* | 2 / (£ m -£ w 0. (A5) 

Here, the dipole-dipole term has been omitted on the 
basis of Silver's arguments.14 The second-order term in 
AEm can be expanded 

Em^ = Z{ I ( H ' Q W I H - 2 R e ( # ' Q W ( # W 

+ 1 (#' 
KAQjm'm 

KA0)mm>\2}(Em-Em,)-K (A6) 

With respect to (A6), the first question to be resolved 
is that of the relative sizes of the second terms. One basis 
for accomplishing this is to assume that 

(HfQ)mm'~{$ , (H'KA§)mm>~ (EL'KAd)mm~&, 

and that in the cases of interest, a~/32/hvL. Then, 

AE <2>; 
j82 2/3a a2 /32 

-+ + «-
2/33 

hvL hvL hvL hvL QIVL)2 (HVLY 
(A7) 

With (3/hvL<£ly it is clear that the second and third 
terms give contributions which are small compared to 
the first. This justifies neglecting these terms if the 

13 F. J. Milford (unpublished), 14 A. H. Silver, J. Chem. Phys. 32, 959 (1960). 
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assumption that (Hf
KA<y)mm>~{HfKAd)mm can be veri­

fied. I t would be equally useful to establish that 
(H,KAo)mmf < (H*KAd) mm> 

To investigate this point we now assume axial sym­
metry for the electron distribution. Let the coordinates 
x, y, z be so chosen that the 2-axis is the symmetry 
axis. An arbitrary point is specified by the coordinates 
r, @, <£. Furthermore, let the axes £, rj, f be such that 
Ho is along f and makes polar angles 6, 4> with the x, y, z 
coordinates. Choose £ to lie in the x, y plane, making 
an angle <$>—TT/2 with the x axis. 

In terms of these coordinates one may, following 
Bloembergen and Rowland,10 write 

HfKAd=" —gui&Iu Z <Sh( l -3 co$26jk)/rjk
z 

+2 

k Z=-2 

XP2
Z(cOS@)P2-KcOS60eiZ($-*W3 , 

where the z subscript on the spin operators has been 
changed to f in order to agree with the coordinates in­
troduced above. Continuing with the assumption of axial 
symmetry, one may assume that the electronic wave 
functions have the form 

^ V = f 8 g ( r ) [ i l + ( C - i l ) cos2@], (A9) 

if only s and p states are included. Then, as Bloembergen 
and Rowland have shown,10 

mm' 

/16ir\ 
[ WoffoXpO.(3 c o s 2 0 - l ) ( C - . 4 ) 

X / rg(r)dr 
Jo 

(A10) 

= i ^ o ( 3 c o s 2 0 - l ) , 

where the last equality defines F. 

For the off-diagonal part H'KAQ we have 

H'KAQ= 6gMo/3 E Si-*/y cos0y* sinfy* cos0y*/r/*8, (Al 1) 
k 

plus a similar term involving Iv\ Changing variables to 
0 , <£; 0, <t> gives 

H'KAQ=6gv>oP 2 £rkl$fr~z sin©[cos<£ sin$—sin$ cos#] 
k 

X [sin0 cos<£ sin® cos$ 

+sin0 sin</> sin© sin$-}-cos0 cos©]. (A12) 

Again taking $*\p as given by (A9), one finds 

• / 

(A8) (H'KAo)f»m>~ / r+g{r)[A+{C-A) cos20] 

X sin@[cos<l> sin<£—sin<£ cos<£] 

X[sin0 cos0 sin© cos<£+sin0 sin$ sin© sin<£ 

+cos0 cos@>2 $in<ddrd<dd$. (A13) 

I t is convenient to do the <£ integration first, and this 
leads to 

(H'KAO) ' J rg(r)dr \ ZA+(C-A)cos26~] 

X [sin0 cos<f> sin$ sin© (A14) 

—sin<£ sin0 cos<£ sin©] sin2©J© 

= 0. 

The same argument applies to the term involving Iv: 
As a consequence of (A14), the second-order energy 

shift (A6) reduces rigorously to the second-order 
quadrupole shift alone. 


